The Problem

_]
———]
]
Store data
||
ﬂATA/ EG Bank Accounts
Account no.
Balance Account number, Details
LSS And the balance
" Name
- 5000+ Accounts
—

thousands of additions,
deletinons and queries
per second

Specifics

add entries

Lookup entrie's info

delete and modify entries

do all of that VERY quickly

space 1isn't too much of a problem

All entries must have a key, EG Acount No.

Key used to specify which entry must be
Queried/modified/deleted

Possible Solutions

Array
-Not Dynamic, Deletions and Additions Impractica

Linked List
-too slow in lookup/change/delete

Trees
-Faster, but still too slow

The Ultimate Solution: Hash Tables!!!

Hash Tables

Hash tables = constant time
Adding/deleting/querying/modifyingin O(1l) time!

Actual efficiency depends on:

Quality of Hash Function
Memory available
Input

Bad hash function/Evil input/zero memory
linear time

How they Work

Array of size X

Hash function, f(), accepts whatever type
the key is

0 <= f(key) < x

f(key) always the same

Entry 1s stored at position f(key) in the array
Collisions: two or more keys produce same result

There are several ways to handle collisions

The Hash Function

A well chosen hash function is vitally important

Designed for intended data
Produce an even spread, with minimal collisions

Speed & SlmpllClty (SHA-1 cryptographic hash function will not do!)
Good example function:

<This space intentionally left blank so that
coaches can provide their valuable input :>

Storing Data

Seperate chaining — attach linked lists

Open adressing — Store data in table

Collision Handling

In seperate chaining — not a problem, an element
1s simply appended to the end of the list

In open addressing, probing is required
Probing = looking for somewhere else to put it
Linear probing

Quadratic probing

Double hashing

Linear Probing

When storing:

1. If original spot is available, store there

2. If not, check i1f the next position 1is open
If it 1s store there.

3. If not, check the next one, etc.

When retrieving:

1. Check original spot, i1f taken but not correct
2. Check the next spot.

3. Continue searching till item or empty space

Clustering can happen which results in reduced
efficiency

Quadratic Probing

Similar to linear, except that the interval
between probes increases

This helps to alleviate clustering

Double Hashing

The interval between probing i1s calculated by
a second, different hash function

Clustering only occurs when the table is very
close to full

Deleting

With seperate chaining: this is trivial
With open addressing: 1ts more complicated...
Remember, search stops when it finds empty entry

Potentially seperate data from it's intended
position

One solution 1s to use a “place holder”

Can be written over when adding data

Will be treated as a incorrect match and not a
empty space when searching.

Resizing

If you know how much data before hand, not reall
an lssue

Seperate chaining: resizing recommended
Open addressing: resizing crucial

As the table's load passes 80%, open addressing
becomes very 1nefficient very quickly

It 1s recommended to do a resize operation at
about 75% load.

Reslizing 1s costly so increase by a ratio
ie. Double the size, don't just add 10 entries

To chailn or not to chain

Clearly seperate chaining i1s easiest to implement
No probing, deleting easy, resizing less crucial

Seperate chaining also conserves space when load
1s low or when data is large

Use seperate chaining whenever the data 1s more
than 4 words

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

